This function fits the multinomial-Poisson mixture model, useful for data collected via survey methods such as removal or double observer sampling.
Double right-hand side formula describing covariates of detection and abundance in that order
A unmarkedFrameMPois
object
Prior distribution for the intercept of the
state (abundance) model; see ?priors
for options
Prior distribution for the regression coefficients of the state model
Prior distribution for the intercept of the detection probability model
Prior distribution for the regression coefficients of the detection model
Prior distribution on random effect standard deviations
If TRUE
, Stan will save pointwise log-likelihood values
in the output. This can greatly increase the size of the model. If
FALSE
, the values are calculated post-hoc from the posteriors
Arguments passed to the stan
call, such as
number of chains chains
or iterations iter
ubmsFitMultinomPois
object describing the model fit.
# \donttest{
data(ovendata)
ovenFrame <- unmarkedFrameMPois(ovendata.list$data,
siteCovs=ovendata.list$covariates,
type="removal")
oven_fit <- stan_multinomPois(~1~scale(ufc), ovenFrame, chains=3, iter=300)
#>
#> SAMPLING FOR MODEL 'multinomPois' NOW (CHAIN 1).
#> Chain 1:
#> Chain 1: Gradient evaluation took 0.000183 seconds
#> Chain 1: 1000 transitions using 10 leapfrog steps per transition would take 1.83 seconds.
#> Chain 1: Adjust your expectations accordingly!
#> Chain 1:
#> Chain 1:
#> Chain 1: Iteration: 1 / 300 [ 0%] (Warmup)
#> Chain 1: Iteration: 30 / 300 [ 10%] (Warmup)
#> Chain 1: Iteration: 60 / 300 [ 20%] (Warmup)
#> Chain 1: Iteration: 90 / 300 [ 30%] (Warmup)
#> Chain 1: Iteration: 120 / 300 [ 40%] (Warmup)
#> Chain 1: Iteration: 150 / 300 [ 50%] (Warmup)
#> Chain 1: Iteration: 151 / 300 [ 50%] (Sampling)
#> Chain 1: Iteration: 180 / 300 [ 60%] (Sampling)
#> Chain 1: Iteration: 210 / 300 [ 70%] (Sampling)
#> Chain 1: Iteration: 240 / 300 [ 80%] (Sampling)
#> Chain 1: Iteration: 270 / 300 [ 90%] (Sampling)
#> Chain 1: Iteration: 300 / 300 [100%] (Sampling)
#> Chain 1:
#> Chain 1: Elapsed Time: 0.127 seconds (Warm-up)
#> Chain 1: 0.109 seconds (Sampling)
#> Chain 1: 0.236 seconds (Total)
#> Chain 1:
#>
#> SAMPLING FOR MODEL 'multinomPois' NOW (CHAIN 2).
#> Chain 2:
#> Chain 2: Gradient evaluation took 0.000126 seconds
#> Chain 2: 1000 transitions using 10 leapfrog steps per transition would take 1.26 seconds.
#> Chain 2: Adjust your expectations accordingly!
#> Chain 2:
#> Chain 2:
#> Chain 2: Iteration: 1 / 300 [ 0%] (Warmup)
#> Chain 2: Iteration: 30 / 300 [ 10%] (Warmup)
#> Chain 2: Iteration: 60 / 300 [ 20%] (Warmup)
#> Chain 2: Iteration: 90 / 300 [ 30%] (Warmup)
#> Chain 2: Iteration: 120 / 300 [ 40%] (Warmup)
#> Chain 2: Iteration: 150 / 300 [ 50%] (Warmup)
#> Chain 2: Iteration: 151 / 300 [ 50%] (Sampling)
#> Chain 2: Iteration: 180 / 300 [ 60%] (Sampling)
#> Chain 2: Iteration: 210 / 300 [ 70%] (Sampling)
#> Chain 2: Iteration: 240 / 300 [ 80%] (Sampling)
#> Chain 2: Iteration: 270 / 300 [ 90%] (Sampling)
#> Chain 2: Iteration: 300 / 300 [100%] (Sampling)
#> Chain 2:
#> Chain 2: Elapsed Time: 0.137 seconds (Warm-up)
#> Chain 2: 0.116 seconds (Sampling)
#> Chain 2: 0.253 seconds (Total)
#> Chain 2:
#>
#> SAMPLING FOR MODEL 'multinomPois' NOW (CHAIN 3).
#> Chain 3:
#> Chain 3: Gradient evaluation took 0.000134 seconds
#> Chain 3: 1000 transitions using 10 leapfrog steps per transition would take 1.34 seconds.
#> Chain 3: Adjust your expectations accordingly!
#> Chain 3:
#> Chain 3:
#> Chain 3: Iteration: 1 / 300 [ 0%] (Warmup)
#> Chain 3: Iteration: 30 / 300 [ 10%] (Warmup)
#> Chain 3: Iteration: 60 / 300 [ 20%] (Warmup)
#> Chain 3: Iteration: 90 / 300 [ 30%] (Warmup)
#> Chain 3: Iteration: 120 / 300 [ 40%] (Warmup)
#> Chain 3: Iteration: 150 / 300 [ 50%] (Warmup)
#> Chain 3: Iteration: 151 / 300 [ 50%] (Sampling)
#> Chain 3: Iteration: 180 / 300 [ 60%] (Sampling)
#> Chain 3: Iteration: 210 / 300 [ 70%] (Sampling)
#> Chain 3: Iteration: 240 / 300 [ 80%] (Sampling)
#> Chain 3: Iteration: 270 / 300 [ 90%] (Sampling)
#> Chain 3: Iteration: 300 / 300 [100%] (Sampling)
#> Chain 3:
#> Chain 3: Elapsed Time: 0.129 seconds (Warm-up)
#> Chain 3: 0.113 seconds (Sampling)
#> Chain 3: 0.242 seconds (Total)
#> Chain 3:
#> Warning: Bulk Effective Samples Size (ESS) is too low, indicating posterior means and medians may be unreliable.
#> Running the chains for more iterations may help. See
#> https://mc-stan.org/misc/warnings.html#bulk-ess
#> Warning: Tail Effective Samples Size (ESS) is too low, indicating posterior variances and tail quantiles may be unreliable.
#> Running the chains for more iterations may help. See
#> https://mc-stan.org/misc/warnings.html#tail-ess
# }