Model selection results from an unmarkedFitList

Arguments

object

an object of class "unmarkedFitList" created by the function fitList.

nullmod

optional character naming which model in the fitList contains results from the null model. Only used in calculation of Nagelkerke's R-squared index.

Value

A S4 object with the following slots

Full

data.frame with formula, estimates, standard errors and model selection information. Converge is optim convergence code. CondNum is model condition number. n is the number of sites. delta is delta AIC. cumltvWt is cumulative AIC weight. Rsq is Nagelkerke's (1991) R-squared index, which is only returned when the nullmod argument is specified.

Names

matrix referencing column names of estimates (row 1) and standard errors (row 2).

Note

Two requirements exist to conduct AIC-based model-selection and model-averaging in unmarked. First, the data objects (ie, unmarkedFrames) must be identical among fitted models. Second, the response matrix must be identical among fitted models after missing values have been removed. This means that if a response value was removed in one model due to missingness, it needs to be removed from all models.

References

Nagelkerke, N.J.D. (2004) A Note on a General Definition of the Coefficient of Determination. Biometrika 78, pp. 691-692.

Author

Richard Chandler rbchan@uga.edu

Examples

data(linetran)
(dbreaksLine <- c(0, 5, 10, 15, 20)) 
#> [1]  0  5 10 15 20
lengths <- linetran$Length * 1000

ltUMF <- with(linetran, {
  unmarkedFrameDS(y = cbind(dc1, dc2, dc3, dc4), 
  siteCovs = data.frame(Length, area, habitat), dist.breaks = dbreaksLine,
  tlength = lengths, survey = "line", unitsIn = "m")
  })

fm1 <- distsamp(~ 1 ~1, ltUMF)
fm2 <- distsamp(~ area ~1, ltUMF)
fm3 <- distsamp( ~ 1 ~area, ltUMF)

fl <- fitList(Null=fm1, A.=fm2, .A=fm3)
fl
#> An object of class "unmarkedFitList"
#> Slot "fits":
#> $Null
#> 
#> Call:
#> distsamp(formula = ~1 ~ 1, data = ltUMF)
#> 
#> Density:
#>  Estimate    SE     z P(>|z|)
#>    -0.171 0.134 -1.28   0.201
#> 
#> Detection:
#>  Estimate    SE    z  P(>|z|)
#>      2.39 0.127 18.7 2.46e-78
#> 
#> AIC: 164.7524 
#> 
#> $A.
#> 
#> Call:
#> distsamp(formula = ~area ~ 1, data = ltUMF)
#> 
#> Density:
#>  Estimate    SE     z P(>|z|)
#>    -0.168 0.134 -1.25    0.21
#> 
#> Detection:
#>             Estimate     SE     z  P(>|z|)
#> (Intercept)     3.00 0.5402  5.56 2.72e-08
#> area           -0.12 0.0955 -1.26 2.07e-01
#> 
#> AIC: 165.1845 
#> 
#> $.A
#> 
#> Call:
#> distsamp(formula = ~1 ~ area, data = ltUMF)
#> 
#> Density:
#>             Estimate     SE      z P(>|z|)
#> (Intercept)   0.2364 0.5123  0.462   0.644
#> area         -0.0801 0.0979 -0.817   0.414
#> 
#> Detection:
#>  Estimate    SE    z  P(>|z|)
#>      2.39 0.127 18.7 2.47e-78
#> 
#> AIC: 166.0759 
#> 
#> 

ms <- modSel(fl, nullmod="Null")
ms
#>      nPars    AIC delta AICwt cumltvWt   Rsq
#> Null     2 164.75  0.00  0.43     0.43 0.000
#> A.       3 165.18  0.43  0.35     0.78 0.122
#> .A       3 166.08  1.32  0.22     1.00 0.055

coef(ms)                            # Estimates only
#>        lam(Int)   lam(area)   p(Int)   p(area)
#> Null -0.1710554          NA 2.386380        NA
#> A.   -0.1678270          NA 3.002507 -0.120364
#> .A    0.2364320 -0.08005895 2.386386        NA
SE(ms)                              # Standard errors only
#>      SElam(Int) SElam(area)  SEp(Int)  SEp(area)
#> Null  0.1337819          NA 0.1273598         NA
#> A.    0.1340212          NA 0.5401575 0.09548038
#> .A    0.5122837   0.0979427 0.1273614         NA
(toExport <- as(ms, "data.frame"))  # Everything
#>   model   formula   lam(Int) SElam(Int)   lam(area) SElam(area)   p(Int)
#> 1  Null    ~1 ~ 1 -0.1710554  0.1337819          NA          NA 2.386380
#> 2    A. ~area ~ 1 -0.1678270  0.1340212          NA          NA 3.002507
#> 3    .A ~1 ~ area  0.2364320  0.5122837 -0.08005895   0.0979427 2.386386
#>    SEp(Int)   p(area)  SEp(area) Converge     CondNum negLogLike nPars  n
#> 1 0.1273598        NA         NA        0    5.199344   80.37622     2 12
#> 2 0.5401575 -0.120364 0.09548038        0 1065.747363   79.59224     3 12
#> 3 0.1273614        NA         NA        0  783.165345   80.03795     3 12
#>        AIC     delta     AICwt        Rsq  cumltvWt
#> 1 164.7524 0.0000000 0.4307243 0.00000000 0.4307243
#> 2 165.1845 0.4320554 0.3470401 0.12248591 0.7777644
#> 3 166.0759 1.3234600 0.2222356 0.05481861 1.0000000