pcount.spHDS.Rd
Function fits an N-mixture model for a discrete state space with raster covariates, and a detection function which decreases with distance from the observer, assumed to be at the centre. See Kery & Royle (2016) Section 9.8.4 for details.
pcount.spHDS(formula, data, K, mixture = c("P", "NB", "ZIP"), starts,
method = "BFGS", se = TRUE, ...)
Double right-hand side formula describing covariates of detection and abundance, in that order.
Detection model should be specified without an intercept, for example:
~ -1 + I(dist^2)
, where dist
is a covariate giving the distance of each cell of the raster from the observer.
Internally this forces the intercept p(0) = 1
, conventional for distance
sampling models (see Kery & Royle (2016) for explanation). More general models
work but may not honor that constraint. e.g.,
~ 1,
~ dist,
~ I(dist^2),
~ dist + I(dist^2)
an unmarkedFramePCount
object supplying data to the model.
Integer upper index of integration for N-mixture. This should be set high enough so that it does not affect the parameter estimates. Note that computation time will increase with K.
character specifying mixture: Poisson (P), Negative-Binomial (NB), or Zero Inflated Poisson (ZIP).
vector of starting values
Optimization method used by optim
.
logical specifying whether or not to compute standard errors.
Additional arguments to optim, such as lower and upper bounds
unmarkedFit object describing the model fit.
Kery & Royle (2016) Applied Hierarachical Modeling in Ecology Section 9.8.4
## Simulate some data to analyse
# This is based on Kery and Royle (2016) section 9.8.3
# See AHMbook::sim.spatialDS for more simulation options.
# We will simulate distance data for a logit detection function with sigma = 1,
# for a 6x6 square, divided into a 30 x 30 grid of pixels (900 in all), with the
# observer in the centre.
set.seed(2017)
## 1. Create coordinates for 30 x 30 grid
grx <- seq(0.1, 5.9, 0.2) # mid-point coordinates
gr <- expand.grid(grx, grx) # data frame with coordinates of pixel centres
## 2a. Simulate spatially correlated Habitat covariate
# Get the pair-wise distances between pixel centres
tmp <- as.matrix(dist(gr)) # a 900 x 900 matrix
# Correlation is a negative exponential function of distance, with scale parameter = 1
V <- exp(-tmp/1)
Habitat <- crossprod(t(chol(V)), rnorm(900))
## 2b. Do a detection covariate: the distance of each pixel centre from the observer
dist <- sqrt((gr[,1]-3)^2 + (gr[,2]-3)^2)
## 3. Simulate the true population
# Probability that an animal is in a pixel depends on the Habitat covariate, with
# coefficient beta:
beta <- 1
probs <- exp(beta*Habitat) / sum(exp(beta*Habitat))
# Allocate 600 animals to the 900 pixels, get the pixel ID for each animal
pixel.id <- sample(1:900, 600, replace=TRUE, prob=probs)
## 4. Simulate the detection process
# Get the distance of each animal from the observer
# (As an approximation, we'll treat animals as if they are at the pixel centre.)
d <- dist[pixel.id]
# Calculate probability of detection with logit detection function with
sigma <- 1
p <- 2*plogis(-d^2/(2*sigma^2))
# Simulate the 1/0 detection/nondetection vector
y <- rbinom(600, 1, p)
# Check the number of animals detected
sum(y)
#> [1] 112
# Select the pixel IDs for the animals detected and count the number in each pixel
detected.pixel.id <- pixel.id[y == 1]
pixel.count <- tabulate(detected.pixel.id, nbins=900)
## 5. Prepare the data for unmarked
# Centre the Habitat covariate
Habitat <- Habitat - mean(Habitat)
# Construct the unmarkedFramePCount object
umf <- unmarkedFramePCount(y=cbind(pixel.count), # y needs to be a 1-column matrix
siteCovs=data.frame(dist=dist, Habitat=Habitat))
summary(umf)
#> unmarkedFrame Object
#>
#> 900 sites
#> Maximum number of observations per site: 1
#> Mean number of observations per site: 1
#> Sites with at least one detection: 87
#>
#> Tabulation of y observations:
#> 0 1 2 3 5
#> 813 67 17 2 1
#>
#> Site-level covariates:
#> dist Habitat
#> Min. :0.1414 Min. :-3.084964
#> 1st Qu.:1.7029 1st Qu.:-0.621886
#> Median :2.4042 Median :-0.000016
#> Mean :2.2946 Mean : 0.000000
#> 3rd Qu.:2.9155 3rd Qu.: 0.570115
#> Max. :4.1012 Max. : 2.783497
## 6. Fit some models
(fm0 <- pcount.spHDS(~ -1 + I(dist^2) ~ 1, umf, K = 20))
#>
#> Call:
#> pcount.spHDS(formula = ~-1 + I(dist^2) ~ 1, data = umf, K = 20)
#>
#> Abundance:
#> Estimate SE z P(>|z|)
#> -0.569 0.131 -4.35 1.37e-05
#>
#> Detection:
#> Estimate SE z P(>|z|)
#> -0.602 0.0929 -6.48 9.14e-11
#>
#> AIC: 578.9329
(fm1 <- pcount.spHDS(~ -1 + I(dist^2) ~ Habitat, umf, K = 20))
#>
#> Call:
#> pcount.spHDS(formula = ~-1 + I(dist^2) ~ Habitat, data = umf,
#> K = 20)
#>
#> Abundance:
#> Estimate SE z P(>|z|)
#> (Intercept) -0.897 0.139 -6.47 1.01e-10
#> Habitat 1.134 0.134 8.46 2.66e-17
#>
#> Detection:
#> Estimate SE z P(>|z|)
#> -0.616 0.0821 -7.5 6.59e-14
#>
#> AIC: 505.6613
# The true Habitat coefficient (beta above) = 1
# fm1 has much lower AIC; look at the population estimate
sum(predict(fm1, type="state")[, 1])
#> [1] 631.1605